Reconciliation of metabolites and biochemical reactions for metabolic networks
نویسندگان
چکیده
Genome-scale metabolic network reconstructions are now routinely used in the study of metabolic pathways, their evolution and design. The development of such reconstructions involves the integration of information on reactions and metabolites from the scientific literature as well as public databases and existing genome-scale metabolic models. The reconciliation of discrepancies between data from these sources generally requires significant manual curation, which constitutes a major obstacle in efforts to develop and apply genome-scale metabolic network reconstructions. In this work, we discuss some of the major difficulties encountered in the mapping and reconciliation of metabolic resources and review three recent initiatives that aim to accelerate this process, namely BKM-react, MetRxn and MNXref (presented in this article). Each of these resources provides a pre-compiled reconciliation of many of the most commonly used metabolic resources. By reducing the time required for manual curation of metabolite and reaction discrepancies, these resources aim to accelerate the development and application of high-quality genome-scale metabolic network reconstructions and models.
منابع مشابه
MetaNetX/MNXref - reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks
MetaNetX is a repository of genome-scale metabolic networks (GSMNs) and biochemical pathways from a number of major resources imported into a common namespace of chemical compounds, reactions, cellular compartments--namely MNXref--and proteins. The MetaNetX.org website (http://www.metanetx.org/) provides access to these integrated data as well as a variety of tools that allow users to import th...
متن کاملThe Evolution of Connectivity in Metabolic Networks
Processes in living cells are the result of interactions between biochemical compounds in highly complex biochemical networks. It is a major challenge in biology to understand causes and consequences of the specific design of these networks. A characteristic design feature of metabolic networks is the presence of hub metabolites such as ATP or NADH that are involved in a high number of reaction...
متن کاملPruning genome-scale metabolic models to consistent ad functionem networks.
Metabolic networks represent a set of reactions and associated metabolites that may occur in a given cell or tissue. They are frequently reconstructed from pure genomic data without thorough biochemical validation. Such genome-scale metabolic networks may thus either lack relevant or contain non-existent reactions and metabolites. Filling gaps and removing falsely predicted reactions can be a c...
متن کاملMetabolic networks: enzyme function and metabolite structure.
Metabolism is one of the most complex cellular processes. Connections between biochemical reactions via substrate and product metabolites create complex metabolic networks that may be analyzed using network theory, stoichiometric analysis, and information on protein structure/function and metabolite properties. These frameworks take into consideration different aspects of enzyme chemistry, enzy...
متن کاملMetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks
High-throughput metabolomic experiments aim at identifying and ultimately quantifying all metabolites present in biological systems. The metabolites are interconnected through metabolic reactions, generally grouped into metabolic pathways. Classical metabolic maps provide a relational context to help interpret metabolomics experiments and a wide range of tools have been developed to help place ...
متن کامل